Computer Networks (Intensive Learning Experience)

July 03, 2018

Dr. Ram P Rustagi
Dept of CSE
KSIT, Bangalore
rprustagi@ksit.edu.in
http://www.rprustagi.com

Executive Summary

- Why ILE
 - Covering employability gap
- Network Technology Topics
 - DNS, Packet forwarding/routing
 - In routers and switches
 - ICMP, ARP, Path MTU
 - HTTP, SSH, FTP, Telnet
 - IP, IPv6, TCP, UDP
- Tools for learning and experience
 - nc, wget, telnet, wireshark, tcpdump
 - ip (iproute2 package) commands
 - Cisco packet tracer, GNS3 simulator

Sources

- iproute2 package
 - <u>lartc.org/howto/lartc.iproute2.explore.html</u>
- wireshark: <u>www.wireshark.org</u>
- nc: <u>netcat.sourceforge.net/</u>
- Cisco Packet Tracer: Cisco Network Academcy
- GNS3: www.gns3.net/download/
- Learning Linux:
 - https://www.edx.org/course/introduction-linuxlinuxfoundationx-lfs101x-1
- ACS : http://acc.digital
- Github: github.com/rprustagi
- ELNT: http://rprustagi.com/ELNT/Experiential- Learning.html

NETWORK

Acronym

- Novel
- Experience of
- Theoretical,
- Working,
- Operational, and
- Realized
- Knowledge

Why ILE?

- Employability gap
 - As per industry, gap >80% or even >90%
 - Poor performance during placement
 - Lack of knowledge to carry out required work
 - Lack of practical hands-on experience in college
- Approach for experience network technology
 - Consider a simple everyday case study
 - Consider various scenarios, constraints
 - Should be doable in the lab
 - Using only open source software
 - Discuss commonly asked placement questions
- Expectation:
 - Confidence with knowledge of how network works

Every Day Case Study

- Example case study: Using a browser on your laptop
- Question:
 - What happens internally when you type in google.com in your browser?"
 - What kind of network activity takes place in n/w
 - laptop, gateway, other network elements
 - Map Browser interaction to TCP/IP stack/layers
 - Protocols/addressing at each layer
 - IP addressing, subnetting, supernetting
 - What is TCP? Its working and handshaking.
 - Web Security

General N/W Insights

- HTTP protocol
 - request and response structure
 - role of headers
 - authentication
 - password fields
 - .htaccess, other protection
 - multi-site hosting
 - persistent vs non-persistent questions
 - session mgmt
 - cookies, URL rewriting, hidden fields
 - proxies: forward and reverse
- HTTPS: certificate mgmt

General N/W Queries

- What is subnetting?
 - How to divide various networks using subnet?
 - How many systems in particular subnet.
 - What subnet to be used for given setup
 - Masking the IP address
- Explain TCP flow control and congestion control
- How to know if a website is fake or not?
- For a given scenario, how to choose protocol
 - When to use UDP or TCP?

N/W Programming Challenges

- Difference between port and socket?
 - What is socket programming
 - what bind(), listen() do for server
 - Write a simple tcp server (pseudocode only)
 - Explain TCP handshake
- Is TCP reliable?
- Difference between various network elements
 - hub, repeater, switch, bridge, routers, gateways etc.
- HTTP return codes
 - (*) HTTP logs
- Concept of CDN (Akamai)

General N/W Misnomers

- Forwarding vs Routing
- What are various delays:
 - Propagation, Transmission, Queuing, Processing
- Address types:
 - Unicast, Multicast, Broadcast, Anycast
- Public IP address vs. Private IP address
- Error handling
 - Error Correction vs Error Detection
 - Parity bits, CRC, internet checksum

General N/W Operations

- If you want to isolate 2 systems in the same network, how would you do it?
- Explain the workings of DHCP and IP assignment
- After TCP connection opened, server goes down.
 What happens?
- Difference between forward and reverse proxy
- Difference between Router and multi-homed host
- P2P network vs Client server network
- Communication types:
 - Simples, half duplex, full duplex

Basis of TCP Handshake

2-way handshake:

choose x req_conn(x)
acc_conn(x)
ESTAB

- Q: will 2-way handshake always work in network?
- variable delays
- retransmitted messages (e.g. req_conn(x)) due to message loss
- message reordering
- * can't "see" other side

Basis of TCP Handshake

Source: Kurose, Ross: Computer Networking, A Top Down Approach

2-way handshake failure scenarios:

TCP 3-Way Handshake

Source: Kurose, Ross: Computer Networking, A Top Down Approach

Hands-On IPv4 Routing

Typical E-commerce Traffic Setup

Typical E-commerce Traffic with MITM

- Typical Usage: User enters <u>ecomm.site</u>
- MITM attacker hijacks the URLs and changes n/w settings
- All the back and forth traffic goes via attackr.
- Gets the web page displayed
- Proceeds with transaction

Typical E-commerce Traffic w/ MITM **User-A** ecomm.site 6a AP/Router User-X 6b **User-X** (MITM Attacker) **User-A** ecomm.site 1. http://ecomm.site 2. http://ecomm.site 3. 302 Redirect to https://ecomm.site 4. New request to https://ecomm.site 5. Setup of HTTPS Session 6a. HTTP Response **6b Secure Data Exchange** & Data Exchange with eavesdropping

society

The Web Today

- Total num of hostnames and active sites (June 2018)
 - src: http://news.netcraft.com/archives/
 - Number of sitenames and active sites
 - Sitenames: 1.6+B, Active sites: 177+M
 - Web server vendors
 - June 2018: Apache: 25%, MS IIS: 32%, Nginx: 23%
 - Web Clients: GUI browsers, text browsers
- Communication protocols
 - HTTP, HTTPS
 - Extension of HTTP: WebDAV, CarDAV, CalDAV...

Analogy - Travel to a new place

- Life in getting to new place (e.g. tourism)
 - Identify the tourist location address
 - What is internet similarity?
 - Take a cab to go to airport
 - What is corresponding equivalent in network?
 - Take the appropriate flight
 - Similarity in internet?
 - May need to go over multiple hops
 - Take local transport from last hop
 - Similarity in network?
- Is return path same?

Analogy - Travel to a new place

- Unforeseen challenges
 - Cab break down
 - Traffic jam
 - Airport strike
 - Smaller airplane than initially planned
 - Family members split?
 - Get into the wrong airplane
 - Destination closed

Packet in Internet

- Case I:
 - Consider the following daily life example
- PC is powered up
 - (Assuming no network activity is launched in background)
 - Web Browser is opened
 - user types the URL www.google.com
- What happens
 - which is the first packet that goes out

Packet in Internet: Web Access

- Case I Steps
 - ARP exchange
 - DNS exchange
 - Web Exchange
 - HTTP Redirect, embedded URLs
 - DNS Again
- Other related steps whenever applicable
 - NAT
 - DNAT/SNAT
 - Proxies, Firewalls
 - HTTPS

Exercise Case I: N/W diagram

DNS Server: 192.168.3.1

DNS Entry: <u>www.ieee.org</u> = 192.168.2.1

User is at 10.10.1.1

Exercise Case I: Worksheet

S.No	N/W Link	Src MAC	Dst MAC	Src/ Sender IP	Dest/ Receiv er IP	Protocol Type
1	A->Ra	MA				ARP Request
:						

Every Day Case Study...

- Variations in setup
- Variation I: DNS not configured or down
- Variation 2: Default GW not configured/down
- Variation 3: Using DHCP
- Variation 4: Browser configured with proxy
- Variation 5: Other configurations
 - HTTPS URL accessed with IP Address
 - NAT, MTU changes/fragmentation, ACLs
 - Router subnet is different than yours
 - Hacker acting as MITM for router
 - (Google) Server is too busy, (or not running)
 - Server failover happens

Packet In Internet: TTL

- Case 2:
 - How do you prevent packet looping for ever

Packet in Internet: TTL/Traceroute

- Case 3:
 - Traceroute on Microsoft Windows
 - Traceroute on Linux

Packet in Internet: Server Application stopped

- Case 4:
 - TCP based server application
 - UDP based server application

Packet in Internet: PMTU Discovery

- Case 5:
 - What happens when one link in the path has smaller MTU
 - analogy:
 - got a smaller plane and all member of groups can't travel together

Packet in Internet: IP Fragmentation

- Case 6:
 - What happens when one link in the path has smaller MTU and Don't fragment bit is set
 - Analogy:
 - plane is smaller and group needs to travel together

Thank You

RPR/Experiential Learning - ILE Overview