
Experiential Learning Workshop
on

Basics of HTTP

July 04, 2018 

Dr. Ram P Rustagi
Professor, CSE Dept

KSIT, Bangalore
rprustagi@ksit.edu.in

RPR/Experiential Learning - HTTP Basics

mailto:rprustagi@ksit.edu.in

Resources & Acknowledgements

• Resources
– https://rprustagi.com/ELNT/Experiential-

Learning.html
• Articles in ACCS Journal https://acc.digital
• www.github.com/rprustagi

– https://www.rprustagi.com/workshops/ieee/smvdu
• Slides

– https://www.rprustagi.com/workshops/programs
• Example web pages, and programs

• Acknowledgements:
– Computer Networking: Kurose, Ross

!2RPR/Experiential Learning - HTTP Basics

https://rprustagi.com/ELNT/Experiential-Learning.html
https://rprustagi.com/ELNT/Experiential-Learning.html
https://acc.digital
http://www.github.com/rprustagi
http://www.rprustagi.com/workshops/ieee/smvdu
http://www.rprustagi.com/workshops/programs

Day 1: Basics of Networking
• Overview
• Introduction to basic networking Tools
• Handson 1: using networking tools
• IP and TCP Headers
• Analysis of layers in IP, TCP/UDP
• Handson-2: Analyze IP and TCP headers
• Fragementation and PMTU Discovery
• ICMP Errors, NAT
• Handson-3: ICMP errors, NAT, PMTU
• ARP, DHCP, Proxy, Gratuituous ARP
• Handson-4: ARP protocol
• Summary

!3RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!4RPR/Experiential Learning - HTTP Basics

Day 3: Basics of Transport Layer
• Overview: Transport layer, requirements
• Connection less and connection oriented transport
• Handson-1: Analyze TCP 4-tuple and UDP 2-tuple
• Pseudo headers in TCP/UDP
• Concurrent communications : UDP and TCP
• Handson-2: Using data with same checksum
• TCP and UDP Error control, TCP flags
• Handson-3: Connection Mgmt, Queues, and states
• TCP Streaming, Reliability misnomer,
• UDP message boundaries
• Handson-4: TCP Streams and UDP messages
• Summary

!5RPR/Experiential Learning - HTTP Basics

Day 4: Basics of Web Security
• Overview: HTTPS protocol
• Server certificate and server authentication
• Mixed content and browser warnings
• Locks icons and HTTP Status
• Handson-1: HTTPS website with mixed content
• MITM attack and ARP spoofing
• MITM with browser and information stealing
• Understanding HSTS, CSP
• Handson-2: Implementing ARP Spoofing
• Summary

!6RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!7RPR/Experiential Learning - HTTP Basics

HTTP overview

HTTP: hypertext transfer
protocol

• Application layer protocol
• Client/server model

• client: browser requests,
receives, and “renders”
Web objects

• server: sends objects in
response to requests

• Stateless protocol
• Uses underlying TCP

protocol

!8RPR/Experiential Learning - HTTP Basics

PC running
Firefox browser

server
running

Apache Web
server

iphone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

Source: Kurose, Ross: Computer Networking, A Top Down Approach

HTTP Protocol

• First interaction/implementation
– A subset of intended protocol
– (unofficially) labeled as HTTP 0.9

• HTTP 0.9
– Client-server, request-response protocol
– ASCII protocol, running on TCP/IP
– Design to xfer HTML document
– Connection is closed after each request
– No meta data (HTTP headers)

!9RPR/Experiential Learning - HTTP Basics

HTTP 1.0

• Key protocol changes
– Request has multiple header lines
– Response is prefixed with status line
– Response has its own header lines
– Response can be non-HTML

• A plain text file, image, other contents
– TCP connection closed after response served
– Other supports

• Content encoding, character set, multi-part
• Authentication, caching, proxy behaviours,
• Date formats …

!10RPR/Experiential Learning - HTTP Basics

HTTP 1.1

• RFC 2068 - First official standard (Jan 1977)
• RFC 2616 - Current standard (June 1999)
• A lot of performance optimizations

– Keep alive connections
– Chunked encoding transfers
– Byte range requests
– Additional caching mechanims
– Request pipelines
– Language negotiations
– Caching directives

!11RPR/Experiential Learning - HTTP Basics

HTTP/2

• Goals:
– Impove transport performance
– Lower latency and higher thruput
– No changes in high level semantics

• All headers, values, use cases are same
– Any existing HTTP application should work

without modification
– Any server upgrades should be transparent to

majority of users

!12RPR/Experiential Learning - HTTP Basics

HTTP/2

• Goal: reduce latency
– Make applns faster, simpler & robust

• Mechanism
– Undo workarounds of HTTP 1.1

• Make protocol less sensitive to RTT
– Enable request/response multiplexing
– Minimize protocol overhead
– Enable header compressions
– Request prioritization
– Server push

!13RPR/Experiential Learning - HTTP Basics

HTTP/2

• What does not change from HTTP 1.1
– No semantics changes to HTTP
– All core concepts remains the same

• HTTP methods, Status codes
• URIs, Header fields

• What is changed
– How data is formatted (framed)
– How data is transported
– Hides complexity from application

• With new framing layer

!14RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!15RPR/Experiential Learning - HTTP Basics

HTTP Messages

• Two types
– Request Message
– Response Message

• Data is in clear text
– Readable by humans

• Structure
– Message line
– Header lines
– Empty lines
– Data

!16RPR/Experiential Learning - HTTP Basics

HTTP request message: general format

!17RPR/Experiential Learning - HTTP Basics

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Source: Kurose, Ross: Computer Networking, A Top Down Approach

HTTP request message

• Two types of HTTP messages: request, response
• ASCII (human-readable format)

!18RPR/Experiential Learning - HTTP Basics

request line
(GET, POST,
HEAD commands)

header
 lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /Workshop/IEEE/hello.html HTTP/1.1\r\n
Host: 10.1.12.2\r\n
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5)\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
If-Modified-Since: Tue, 26 Jul 2016 05:47:12 GMT
\r\n

carriage return character

line-feed character

HTTP reponse message: general format

!19RPR/Experiential Learning - HTTP Basics

Status
line

header
lines

body

Protocol sp sp cr lfDescStatus

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

Response entity body~~ ~~

Source: Kurose, Ross: Computer Networking, A Top Down Approach

HTTP response message

!20RPR/Experiential Learning - HTTP Basics

status line
(protocol
status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Tue, 26 Jul 2016 08:33:58 GMT\r\n
Server: Apache/2.4.7 (Ubuntu)\r\n
Last-Modified: Tue, 26 Jul 2016 05:47:12 GMT\r\n
ETag: "a5-538836eb6aa69-gzip"\r\n
Accept-Ranges: bytes\r\n
Content-Encoding: gzip\r\n
Content-Length: 132\r\n
Keep-Alive: timeout=5, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html\r\n
\r\n
data data data data data ...

MIME Types

• Originally for email
• Specifies the form of content served
• Type specifications

• Examples
–text/plain,text/html,image/gif,
–audio/mpeg, video/quicktime,
–application/msword

• Server gets type from file name suffix
• Experimental types

–video/x-msvideo
– Server sends helper application

!21RPR/Experiential Learning - HTTP Basics

HTTP response status codes

• 1xx - Informational
– Request received, continuing process

• 2xx - Success
– Action successful, understood and accepted

• 3xx - Redirection
– Further action must be taken to complete 4xx

• 4xx - Client Error
– Request contains bad syntax or cannot be filled

• 5xx - Server Error
– Server failed to fulfil an apparently valid request

!22RPR/Experiential Learning - HTTP Basics

HTTP response status codes

200 OK

• req succeeded, requested object later in this msg
301 Moved Permanently

• requested object moved, new location specified
later in this msg (Location:)

400 Bad Request (example ?)

• request msg not understood by server
404 Not Found (example ?)

• requested document not found on this server
500 Internal Server Error

• http://<host>/cgi/badcgi.sh
505 HTTP Version Not Supported

!23RPR/Experiential Learning - HTTP Basics

http://localhost/cgi/die.py

HTTP Headers
• Accept-Language: en-US

– Determines your preference
• Accept-Encoding: gzip, deflate

– Determines compressed download
• User-Agent:

– Determines client type
– Mobile, web, tablet

!24RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!25RPR/Experiential Learning - HTTP Basics

Hands-On 1

• Resource:
– https://acc.digital/experiential-learning/

• Installing apache
–sudo apt install apache2

!26RPR/Experiential Learning - HTTP Basics

Hands-On 1

• Resource:
– https://acc.digital/experiential-learning/

• Status code 200
– Content-Type: text/html, text/plain
– Content-Type: image/jpg, text/plain
– Accept-Language: hn-IN, en-US

• Status code 404 Not Found
• Status code 403 Forbidden
• Status code 400 Bad Request
• Status code 301/302 Found

– (Header Location:)
– wget -d http://google.com

!27RPR/Experiential Learning - HTTP Basics

http://google.com

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!28RPR/Experiential Learning - HTTP Basics

HTTP connections
• Non-persistent HTTP

– At most one object sent over TCP connection
• Connection then closed

– Multiple objects requires multiple connections
• Persistent HTTP

– Multiple objects can be sent over single TCP
connection between client, server

• Question?
– Explain in non-technical context
– E.g. Using radio-taxi

!29RPR/Experiential Learning - HTTP Basics

Non-persistent HTTP
suppose user enters URL:

!30RPR/Experiential Learning - HTTP Basics

1a. HTTP client initiates
TCP connection to HTTP
server (process) at
www.someSchool.edu on
port 80

3. HTTP client sends HTTP req
msg (containing URL) into
TCP conn socket. Msg
indicates that client wants
object someDet/home.index

2. HTTP server at host
www.someSchool.edu
waiting for TCP conn at
port 80. “accepts” conn,
notifies client

4. HTTP server receives
req msg, forms resp msg
containing requested
object, and sends
message into its sockettime

(contains text,
references to 10

jpeg images)
myweb.com/mypage.html

Source: Kurose, Ross: Computer
Networking, A Top Down Approach

http://myweb.com/mypage.html

Non-persistent HTTP (cont.)

6. HTTP client receives
response message containing
html file, displays html.
Parsing html file, finds 10
referenced jpeg objects

!31RPR/Experiential Learning - HTTP Basics

 Repeat steps 1-6 for each of 10 jpeg objects

5. HTTP server closes
TCP connection.

time

Source: Kurose, Ross: Computer Networking, A Top Down Approach

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:
• 1 RTT to setup TCP
• 1 RTT for HTTP request and

first few bytes of HTTP
response to return + file
transmission time

• non-persistent response time
= 2RTT+ file xmit time

!32RPR/Experiential Learning - HTTP Basics

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Persistent HTTP

non-persistent
HTTP

issues:
• requires 2 RTTs per

object
• OS overhead for

each TCP connection
• browsers often open

parallel TCP
connections to fetch
referenced objects

!33RPR/Experiential Learning - HTTP Basics

persistent HTTP:
v server leaves connection

open after sending
response

v subsequent HTTP
messages between same
client/server sent over
open connection

v client sends requests as
soon as it encounters a
referenced object

v as little as one RTT for all
the referenced objects

Q: Persistent vs Non-Persistent HTTP

– A web page consists of 10 embedded objects.
– Consider browser uses 3 parallel connections.
– Consider that RTT time is 1 second
– Assume that transmission time is zero and

display time by the browser after receiving
contents is also zero.

– Find out the time taken to display this web
page, when
★Browser uses non-persistent HTTP

connections?
★Browser uses persistent HTTP Connections?

!34RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!35RPR/Experiential Learning - HTTP Basics

Persistent Connections

• Apache Config
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 50

• Browser (firefox) config
– URL “about:config”
– change the value of (default 6)

•network.http.max-persistent-
connections-per-server

• In the browser (firefox) use the URL
–pictures.html
– Analyze the capture in wireshark

!36RPR/Experiential Learning - HTTP Basics

about:config

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!37RPR/Experiential Learning - HTTP Basics

Hands-On 2

• Persistent and Non-persistent connections.
– Create a web page with embedded images

• e.g. rprustagi.com/workshops/web/pictures.html
– Configure Apache with keepalive: off

• Access webpage and analyze wireshark capture
– Configure Apache with keepalive on

• Configure in Firefox max concurrent connections

!38RPR/Experiential Learning - HTTP Basics

http://rprustagi.com/workshops/web/pictures.html

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!39RPR/Experiential Learning - HTTP Basics

Overview

• Basics of Cache
• Conditional-get
• Web cache example
• Type of cache
• Benefits of cache
• Exercises

!40RPR/Experiential Learning - HTTP Basics

*

Web Cache and Proxy

• A Good resource on Web Cache
– https://www.mnot.net/cache_docs/
– https://developers.google.com/web/

fundamentals/performance/optimizing-content-
efficiency/http-caching?hl=en

• Resources and acknowledgements
– http://wps.pearsoned.com/

ecs_kurose_compnetw_6/216/55463/1419870
0.cw/index.html

!41RPR/Experiential Learning - HTTP Basics

https://www.mnot.net/cache_docs/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html
http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html
http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/55463/14198700.cw/index.html

Conditional GET

• Goal: don’t send object if cache has up-to-date
cached version
– no object transmission delay
– lower link utilization

• cache: specify date of cached copy in HTTP
request
If-modified-since: <date>
• server: response contains no object if cached

copy is up-to-date:
HTTP/1.0 304 Not Modified

!42RPR/Experiential Learning - HTTP Basics

Conditional GET

HTTP request msg
If-modified-since:

<date>
HTTP response

HTTP/1.0 304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

!43RPR/Experiential Learning - HTTP Basics

Source: Kurose, Ross: Computer Networking, A Top Down Approach

Web caches (proxy server)
• user sets browser:

Web accesses via
proxy server

• browser sends all
HTTP requests to
cache

goal: satisfy client request
without involving origin
server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

!44RPR/Experiential Learning - HTTP Basics

• object in cache: cache
returns object

• cache requests object
from origin server, then
returns object to client

Source: Kurose, Ross: Computer Networking, A Top Down Approach

More about Web caching

• Proxy server acts as
both client and server
• server for original

requesting client
• client to origin server

• typically proxy server is
installed by ISP
(university, company,
residential ISP)

why Web caching?
• reduce response

time for client
request

• reduce traffic on an
institution’s access
link

• Internet dense with
caches: enables
“poor” content
providers to
effectively deliver
content (so too
does P2P file
sharing)

!45RPR/Experiential Learning - HTTP Basics

Types of Cache

• private cache: Excluive browser cache
• public cache

– proxy cache
• reduces bandwidth requirements
• reduces delays

– gateway cache : (aka reverse proxy cache)
• deployed by web masters for scalability
• examples: memcached, varnish

!46RPR/Experiential Learning - HTTP Basics

Cache Headers

• Last-modified
• If-modified-since / If-unmodified-since
• Etag
• If-none-match
• Vary
• Age
• Pragma directive
• Date
• Expires
• Cache-Control

!47RPR/Experiential Learning - HTTP Basics

Cache-control

!48RPR/Experiential Learning - HTTP Basics

src: https://
developers.google.com/
web/fundamentals/
performance/optimizing-
content-efficiency/http-
caching?hl=en

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/http-caching?hl=en

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cacheing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!49RPR/Experiential Learning - HTTP Basics

Hands-On 3

• Cache-Control
– Access an image directly analyze the response
– Analyze the header: If-Modified-Since
– Update the date/time of image and re-access
– Use nc to pass the headers.

• If-Modified-Since and E-Tags
• update date/time and send Etags as well
• Analyze the response

– Use a PHP program to define max-age
• Access the webpage before and expiry of age

!50RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!51RPR/Experiential Learning - HTTP Basics

HTTP Authentication

• Access /private/abcd.html
– Should see the response as below
– Enter the username/pass

!52RPR/Experiential Learning - HTTP Basics

Apache Config - Authentication
• Authorization: Basic

– Uses Base64 encoding
• Apache configuration
<Directory /var/www/html/private>
 AuthType Basic
 AuthName “For HTTP Learning”
 AuthBasicProvider file
 AuthUserFile /etc/apache2/passwdfile
 Require user student
</Directory>

• Commands to create passwords
–htpasswd [-c] /etc/apache2/passwdfile

• Restart apache

!53RPR/Experiential Learning - HTTP Basics

Encoding of username/password

• Uses Base64 encoding.
– Letters:

• ‘A-Za-z0-9+/‘ # 64 letters (6 bits)
• ‘=‘ a filler.
• For input data, take 6 bits at a time and use the

corresponding encoding.
– Example: ‘bits’ is 0x62697473, i.e.
01100010 01101001 01110100 01100100

–First 6 bits: 011000 i.e. value 24 i.e. letter Y (0—>A)
–Second 6 bits: 100110 i.e. value 40, letter ’o’

• Username and password are separated by ‘:’ (Colon)
• Transmitted in clear text

!54RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!55RPR/Experiential Learning - HTTP Basics

Dynamic Web
• Content is generated when URL is requested

– It is not a static content
– Content is produced by executing program
– Executing program also generates the HTTP headers
– Mechanism of external program execution by web

server is defined as CGI
• Common Gateway Interface
• Program gets the input from web server
• Program outputs content to web server.

– Web server expects a proper response
• Valid HTTP headers (syntax)
• Proper separation of headers and content

!56RPR/Experiential Learning - HTTP Basics

Dynamic Web
• Invoking CGI

– Apache default
•/usr/lib/cgi-bin/

– Apache config
<Directory /var/www/html/cgi>

Options ExecCGI
SetHandler cgi-script

</Directory>
– Enabling CGI as module
•sudo a2enmod cgi

!57RPR/Experiential Learning - HTTP Basics

Working of cgi-bin

• Web server executes the program referred in
URL
– Program could be written in any programming

language
• C, C++, java,perl, python, php, shell etc.

• If program crashes (exits improperly)
– HTTP headers could be corrupted/improper

• When web servers sees inconsistency,
– Given 500 Internal Server Error

!58RPR/Experiential Learning - HTTP Basics

Example of 500 error

• Sample CGI script : cgi-good.sh
#!/bin/bash
echo "Content-Type: text/html”;
echo “";
echo "<h1>Hello World!</h1>”;
exit;

• Error noticed by web server
– No empty line between HTTP headers and

HTML content

!59RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic web
• Handson-4: Authentication, 500 status codes
• Summary

!60RPR/Experiential Learning - HTTP Basics

Handson-4

• Authentication
– Create a web page with authentication access
– Create username password for this web page
– Analyze the credentials exchange using Base64

• Dynamic Web
• Create a simple working cgi-bin program
• Create a bad cgi program which is erroneous
• Create a cgi-bin program which crashes in the

middle
• Access these web pages and analyze 500 error

!61RPR/Experiential Learning - HTTP Basics

Day 2: Basics of HTTP
• Overview: HTTP and Versions
• Request and Response Format, Basic headers
• Handson-1: Analyze HTTP headers, status codes
• HTTP persistent and non-persistent connections
• Apache config support for persistent connections
• Handson-2: Configuring persistent connections
• Web caching, HTTP headers for cache control
• Handson-3: Cachecing, E-tags
• HTTP authentication
• Dynamic Web
• Handson-4: Authentication, 500 status codes
• Summary

!62RPR/Experiential Learning - HTTP Basics

Summary

• HTTP versions
• HTTP protocol : message formats
• HTTP headers
• HTTP Status codes
• Persistent and non-persistent connections
• Cacheing
• Authentication
• Dynamic web

!63RPR/Experiential Learning - HTTP Basics

Thank You

!64RPR/Experiential Learning - HTTP Basics

